
❘ www.cio.co.nz ❘ 16 October 2008

strategy

Michael Wigley

legal insightopinion

Michael Wigley is the

Principal of Wigley &

Company, a law firm

specialising in ICT. He can

be reached at michael.

wigley@wigleylaw.com

If there is a question you

would like Michael to

answer in relation to IT

issues, please forward it to

dparedes@fairfaxbm.co.nz

MINIMISING THE RISK of

software IP problems is important

for organisations, including

ensuring ongoing availability of

software through ownership or

licence. But organisations often

don’t nail this, relying on slim

arrangements or vendor-friendly

agreements.

Government recently announced

it would change the “commission-

ing” rules in the Copyright Act, to

standardise the approach. Where

an organisation commissions

another to develop IP, the default

position will be that the party

creating the IP owns the IP.

If this becomes law, it changes

the reverse default position for

software. Under current law,

the default position is that the

customer owns the IP in the

software.

However, these are just default

rules that can be overridden by

oral or written arrangements.

A discussion or an email can

give ownership to an unintended

party instead.

That’s a real problem, with

disputed evidence of “who said

what” taking one case to the

Court of Appeal, to decide if

the software developer or its

customer owned the software

(ie whether the default commis-

sioning rule was overridden).

There are so many factors in software
IP that cookie cutter IP clauses in
contracts aren’t usually sufficient. Each
situation needs thought and care.

Critical need to protect software IP
The problem would have been

avoided if the customer had

made sure ownership rights were

documented clearly, (ideally in

an agreement but, at least, in an

exchange of email).

So it’s not wise to rely on the

default commissioning rules.

Document it.

Many customers will instinc-

tively think it is best that they

own the software, not the devel-

oper. However, that’s not the

only, or even the best, solution

in all situations. After all, most

organisations want the software

to work long-term in their own

businesses. They won’t on-sell it.

So do they really need to own the

IP?

Developers can commercialise

it. If they own the code cut

specifically for a customer, they

can use it to make more money

down the track by selling to others.

On-going development of code,

built on previous code, makes

sense and is standard anyway.

It’s ‘standing on the shoulders of

giants’. If the developer can reuse

the code because it owns the

code, the price to the customer

could reduce as well, to its

benefit.

More importantly, developing

similar software for others (except

the customer’s competitors) leads

to a better road map for new

releases with quicker and better

bug-fixes, etc. Encouraging

the developer to have a broad

customer base, will make for

more robust and up-to-date

software. This is the way that

ERP providers such as SAP and

Oracle operate. They incorporate

code cut for one client in future

releases of software (where that

improves the base product).

The base product is already

improved by customised code

previously built into the standard

offering. It’s an ongoing cycle of

development; enabled because

the ERP provider, which was paid

for the customised solutions, uses

them for other clients. There’s

no detriment to the customer in

this. Rather there is benefit. So

it’s better for the ERP provider to

own the code. The provider gives

a licence to the customer.

By the way, the idea of joint

ownership between developer

and customer is too messy a

solution. There are better ways.

So, often all that the customer

needs is a wide licence to use the

software, not actually ownership.

This option has also recently

been recognised in New Zealand

Government guidelines.

But doesn’t ownership reduce

risk as the organisation gets

control and also the source code?

Often not. Ownership can be illu-

sory in terms of reducing risk.

The developer typically will

have cut code, which operates on

top of existing software that the

developer owns and provides to

other customers. The additional

code can be useless without

the underlying code. Also, for

complex or badly-drafted code,

having the source code can be

hard to utilise when the developer

has failed or the relationship has

ended.

That highlights the desirability

of looking at options such as

escrow, and also ensuring the

software is developed using best

practice standards (so it is easier

for other developers to run with

it).

That’s easier said than

done. Vigilance is needed. For

example, escrow agreements

must be robust. Many aren’t.

Also, the organisation needs

reassurance that up-to-date

source code, documentation, etc,

is actually lodged in escrow (and

continuously updated).

There are so many factors in

software IP (proprietary software,

open source, library code, bespoke

code, etc) that cookie cutter IP

clauses in contracts aren’t usually

sufficient. Each situation needs

thought and care. ■

